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The problem of the stability of a plane-parallel flow of viscous incompressi- 
ble fluid reduces, as Is well known, 
tion Cl]. 

to solution of the Orr-Sommerfeld equa- 
The study of this equation presents great difficulty. Below we 

consider the very simple example when the flow velocity depends linearly on 
the transverse coordinate, I.e. the case of plane-parallel Couette flow. 
The mathematical problem reduces to determination of the sign of the imagi- 
nary part of the elgenvalues o of the boundary problem 

(kz - c) (cp” - c?qT) = & (I#” - 2299," + cz* (p) 
(1) 

q (--I) = cp' (-1) = cp (1) = cp' (1) = 0 

where k, a and A are certain real positive parameters. 
meters can indeed be reduced by setting c, = o/k 

The number of para- 
and R, = Rk , but it Is 

more convenient to write the equation in the form (1). The paramete.,s have 
the following physical significance: c is the wave length, the phase 
velocity and R, Is the Reynolds number. If the imaginary parts of all the 
elgenvalues o turn out to be negative, then the flow is stable. 

There is a large number of papers in which an attempt is made to prove 
the stability of flow for all values of the parameters a and RI . However, 
nobody has succeeded In proving this rigorously. The usual method of inves- 
tigation Is consideration of the asymrtotic limiting cases, for example, 
large values of the Reynolds number and so on. For other values of the para- 
meters a direct numerical calculation of the elgenvalues is made. In spite 
of the high state of development of asymptotic estimates attained at the 
present time (see, for example, [2]), such a method cannot In principle lead 
to a full and final solution of the problem, since it is not poeslble to 
carry out numerical calculations for the infinite ran e of the parameters, 
for which the asymptotic treatment is not suitable. 7 With regard to asymp- 
totic investigations and numerical calculations, see also[j and 41). From 
the foregoing It follows that the construction of a rigorous and logically 
complete proof of stability of plane Couette flow remains, as before, highly 
desirable. 

Below we prove a more limited proposition, namely that all purely imagi- 
nary eigenvalues o lie In the lower half-plane. (For small values of the 
Reynolds number all the eigenvalues are purely imaginary. With Increasing 
R, they In turn.leave the imaginary axis, first pairing off and then chan- 
ging to pairs of points disposed s 
axis). We notice that in [5 and 4 

metrically relative to the Imaginary 
3" the stability of purely imaginary eigen- 
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values is als,) established by means of a combination of asymptotic consider- 
ations and numerical calculations. 

Theorem Purely imaginary eigenvalues of problem (1) satisfy the 
inequality Imc<--'a/ R. 

By this we shall not only prove the stability of perturbations, but also 
give a certain estimate of their rate of damping. 

Let us write d = -ic+ u/R. T = aI& a z d/k’. It ~111 be necessary 
to prove that the real einenvalues of 07 are nenative. If we intriduce a 

equation will no new-unknown function ~1 =-T'~- u2q then its governing 
longer be of the fourth, but of thh second order 

u" - /a&l = 0 (E = kz - id) 

(Airy's equation), but the boundary conditions will be 
integral conditions. It Is not difficult to show that 
are obtained as the roots of the secular equation 

replaced by certain 
the eigenvalues of d 

-id+k -id+k 
P P 

A (k) F 

_J, -J_, 
.+a y (E - E,) ~1 (E) ~1s (EJ 4% = 0 (2) 

where u, and uz are any two linearly independent solutions of Airy's equa- 
tions. 

Let us expand the function A(k) as a series in powers of k 
Y and a as independent parameters. In an obvious way the f&tion 
is an analytic function of the variable k . 
A(k) in powers Of k , 

By means of the expansion of 
once it is obtained in explicit form, we shall show 

that A cannot vanish for positive values of the parameters a, d and k, 
which proves the theorem. For the expansion in series it willYie necessary 
to calculate successive derivatives of the function A(k) when k = 0 . Let 
us write 

Now let us differentiate 

--i&,:: 
GA (k) 
.__- = 

dk \ 
[say (-- id + k - E) W(““‘) (- id $- k; 6) - 

., 
~a&k 

-sinh~ (- id - k - E) W(“s”) (E, - id - k)! dF, 

In this expression k appears not only in the limits of integration, but 
also in the integrand. Therefore, in the next differentiation we shall 
obtain terms containing the integral and also non-integral terms - from the 
differentiation of the integral with respect to its limits of integration. 
In just the same way with each following differentiation there will remain 
some integral terms - from differentiation of the p;,eceding Integral tel‘m, 
and there will arise 'new" non-integral terms - from differentiation of the 
same preceding integral term with respect to the limits of integration, and 
also supplementary non-integral terms - from dlffel,entiatlon of non-integral 
terms which had arisen earlier. By induction It can be.proved that the 
integral terms and the “new” non-integral teImS in ‘;he CieYiVatiVeS dPA/dhD 

are -i,l+Ji 1-,--: 

stiy (--- id + k - c) 2 Wtn” *-l-m)(- id + k, t) + (2) 

P-l 
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We notice now that the last sum in this expression can be written as 

iP-2aPe2W(C*C) (- id f k, -- id _ k) / adPm2. 

In order to write down now the complete derivative dPA/dkv, we have to 
add to the term (3) the non-integral terms emerging In all the preceding 
differentiations, differentiated the appropriate number of times. We need 
the derivative when k = 0 . 

If we set k = 0 , then the Integral terms vanish, and we shall have 

d2p+2A (0) =4 $(-l)qgq pb-4) 

&2P+2 
8k2(P--9) 

- fsiah2yklV (n’o’ 
q=o 

(- id -I- k, - id - k) ] k=o 

The derivatives of odd order are equal to zero. Let‘ us re-write this 
formula as follows: 

d2p+2A (0) 
dkEP+a 

= .!j pi1 pf$-’ (_ 1)9(22JP;;I) ) (2T)2(P-9-r)-1 x 

q.=o r=o 
a2q aa’+ 

’ G ak2r+l 
kf’(“‘) (- id + k, - id - k) 

I 
(4) 

k=o 

Now let us calculate the expression In square brackets. For this we write 

w1 = Wto*o) (- id + k, - id - k), wz = WC”‘) (- id $ k, - id - k) 

%,a 
= @ln”) (- id + k, - id - k) T W(““) (- id Y& k, - id - k) 

Using Airy's equation, which n, and us satisfy, it Is not difficult to 
see that 

aw 
$=Ws, $=-ode, f iukq 

$= 2ndw, - 2w,, 
aw4 
- = 2iakwl 
8k 

Accordingly, the four functions satisfy a system of four equations. It 
can Immediately be verified that these functions also satisfy the initial 
conditions 

lC1 = w* = 10, = 0, Uls = iD, for- k = 0 

Here the constant 10 can be taken as arbitrary, which corresponds to the 
arbitrariness In the choice of the two linearly independent solutions n, 
and up . We can assume that wI, u)p and u), are odd functions, whilst w 
is even, and this Is lnany case clear immediately from Formulas (5). We 
shall seek a solution of the system in the form of series in powers of k 

co 

Wl = ‘J;: ._k2rila, 
z, (2r t- 111 

and so on. 

After substitution in the equations we obtain a recurrence formula for 
the coefficients 

%3 ‘= 4Gdlr+2 + 4aZ (2r + 2) (2r + 4) a, (r > - 2) 

This difference equation determines a, uniquely to within an arbitrary 
constant factor. A simple verification shows that this difference equation 
is satisfied by Expression 

a, == 
i' 

(4a) 
s--l-l 

r-y$3yjrl s !)-I 

where the dash on the summation sign Indicated that the sum Is taken only 
over such values of the number s that r - s is divisible by 3. Accord- 

InelY, 
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p1 

&2r+1 
F$““) (- id f k, - id - k) 

I 
k=O 

s=o 

Formula (4) can now be written 

It is more convenient to group the terms with the same powers of y and 
d . To do this we write e - 2q = m and p - Q - r = n (it is easy to see 
that p-n-m Is divisible by 3, since r - e is divisible by 3). As a 
result we have 

where only such 
and 

pn+1 

values of n are taken that p - n - m is divisible by 3, 

QP. 771. n= (2; + 2)’ 
(4a)P-“-” r, (-I)* (22jIP_~y$--njr)’ ; (J-y ‘,) 

*=0 ‘9 .m! 

The last expression Is a series with alternating signs. It is elementalay 
to prove that the terms of this series decrease monotonically In absolute 
magnitude, I.e. the sum is positive. Hence it follows that, for positive 
values of d , y and a all the coefficients in the expansion of b in 
powers of k are positive, which also proves the theorem, since a power 
series with positive coefficients cannot vanish for positive values of the 
argument. 

Note on the limiting case 8-m (absence of 
vlscoslty). The equation degenerates to v” - aa i.e. it has no 
solution satisfying the boundary conditions cp(-l(9 1 z(i) = 0 . Tnls means 
that the unsteaay problem of stability cannot be reduced by separatlon of 
the variables to a problem In eigenvalues. Therefore, il.stead of the Orr- 
Sommerfeld equation it is necessary to study the problem with Initial data 
for the equation containing the time variable. This equation is 

( - ; -$ + kz) (a% - ae) rp (-, t) --= 0 

The boundary conditions here are 

cp (- 1, l) =:= (p (1, t) =- 0 

and the Initial conditions are g, (6 0) = ‘Fo (4 

The solution Is found immediately to be 

z 

stia(l - Z) 
- .--~ ~-- a shh2a s 3 -iakzlf~sinha (zl -f- 1) (q,” - aacpo) dz, 

-1 

From this formula It i,s evident that the solution as t + m is bounded, 
i.e. the flow is stable. A more detailed account of the stability of invis- 
cid fluid is to be found in [6]. 
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